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Abstract: Thisstudyintroducesasimpleandenvironmentallyfriendly methodtosynthesize

silica-proteinnanocompositematerialsusingmicrowaveenergytosolubilizehydrophobicprotein

inanaqueoussolutionofpre-hydrolyzedorgano-orfluoro-silane.Sol-gelfunctionalitycanbe

enhancedthroughbiomacromoleculeincorporationtotunemechanicalproperties,surfaceenergy,

andbiocompatibility.Here,syntheticspidersilkproteinandorgano-andfluoro-silaneprecursors

weredissolvedandmixedinweaklyacidicaqueoussolutionusingmicrowavetechnology.Scanning

electronmicroscopy(SEM)andAtomicforcemicroscopy(AFM)imagesrevealedtheformation

ofsphericalnanoparticleswithsizesrangingfrom100to500nmdepending,inpart,onsilane

fluoro-ororgano-sidechainchemistry.Thesilane-proteininteractioninthenanocompositewas

assessedthroughinfraredspectroscopy. DeconvolutedATR-FTIR(Attenuatedtotalreflectance

Fourier-transforminfraredspectroscopy)spectrarevealedsilanechemistry-specificconformational

changesintheprotein-silanenanocomposites.Relativetomicrowave-solubilizedspidersilkprotein,

theβstructurecontentincreasedby14%inthespidersilk-organo-silicananocomposites,butdecreased

byanet20%inthespidersilk-fluoro-silicananocomposites. Methodsoftuningthesecondary

structures,andinparticularβ-sheetsthatarethecross-linkingmoietiesinspidersilksandother

self-assemblingfibrillarproteins,mayprovideauniquemeanstopromoteproteininteractions,favor

subsequentepitaxialgrowthprocess,andenhancethepropertiesoftheprotein-silanenanocomposites.
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1.Introduction

Silicaparticlesarewidelyusedinindustry,medicine,andnanotechnology[1,2]. Bulkand

surfacepropertiesaremodifiedthroughtheincorporationofsmallmoleculessuchassurfactantsto

introduceporosityduringsynthesis,orcoatingwithorganofunctionalsilanespost-synthesistoimpart

definedsurfacechemistries[3].Ifthesilanefunctiongroupisanalkyl-oraryl-moietytheresulting

particleorgelistermedanorganicallymodifiedsilica(ORMOSIL).Organicmodificationsareoften

incorporatedasafunctionalbridgetopromoteadhesionwithadditionalmolecules.Biomacromolecules

bondingtosilicaparticles,surfaces,andwithinporousgelscanbeimprovedthroughORMOSIL

selection[4,5]. Preservingimmobilizedbiomoleculefunction,throughdefinedorientationand

retentionofnativeconfirmationson/insilicasiscriticalforbiomedicalanddiagnosticsapplications[6].

Inparticular,protein-silicacompositematerialsareexploredforapplicationinbiomedicalfieldssuch

asimmunology,cancerresearch,anddrugdelivery[7–10].Thesehybridmaterialsarealsoinvestigated

inmaterialssciencetechnologiessuchasself-assembledmaterials,quantumdotbioconjugates,sensors,

andinorganicmaterialssynthesis[11–17].

Silica-based biomaterials have potential applicationsintissue engineering, where

biomineralizationisnecessaryforboneandtoothrepair,whilesimultaneouslyservingasadrug
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delivery system to stimulate surrounding tissues or prevent infection. Structural integrity can be
enhanced through incorporation of fibrillar protein assemblies such as those observed for spider
silk. Recombinant spider silk (SS) protein is a promising biomaterial with huge potential in the
textiles, biomedical, and manufacturing industry in the form of fibers, films, hydrogels, lyogels,
and adhesives [18–24]. SS based materials have shown potential in tissue engineering through surface
modifications that promote fibroblast cell attachment and proliferation [25–30]. The extraordinary
mechanical strength of SS comes from its β-sheet dominated secondary structures that form the basis for
self-assembly through strong physical interactions [14]. However, SS proteins are insoluble in aqueous
solution, and conventionally dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to generate spin
dopes to create fibers, films, gels, and foams [31–34]. HFIP, however, is expensive and poses significant
health and environmental risks. Recently, a simple microwave method has been introduced to dissolve
SS in aqueous solution, providing a cost-effective and green approach to preparing SS-functionalized
materials and surfaces [35].

Here, we investigate addition of simple organo- and fluoro-silanes (ORMOSILs and F-ORMOSILs)
to SS as a means to tune properties of the resulting sol-gel inorganic/organic composite. Alkoxysilanes
are often used as the precursor for silicone, a widely used adhesive to bridge inorganic materials with
organic molecules [36]. Hydrolyzed ORMOSILs and F-ORMOSILS exhibit a strong ability to induce
secondary structures of globular proteins [37]. We select hydrophobic n-propyltrimethoxy silane (nPM)
and 3,3,3-trifluoropropyl trimethoxy silane (3F) as both have been shown to influence the molten
globule transition and secondary structures of beta-lactoglobulin and albumin [37], which are low
MW, water soluble proteins in contrast to SS. We hypothesize that hydrolyzed nPM and 3F can induce
secondary structure in SS and upon condensation form bio-inorganic nanocomposites consisting of SS
and silica. Using microwave-assisted dissolution of SS in the presence of hydrolyzed silanes followed
by base-initiated condensation yields hybrid spider silk-silica nanocomposites under purely aqueous
conditions. Spherical sub-micron particles are observed for both 3F and nPM, however, the two silanes
distinctly influence the SS secondary structures as determined by FTIR analysis. The β structural
content increased by 10% in the SS-nPM nanocomposites, but decreased by a net 28% in the SS-3F
nanocomposites. The ability to tune protein secondary structures in the protein-ORMOSIL composite
may provide a means to control subsequent growth processes, such as biomineralization with which
biological function and mechanical properties of these composite organic/inorganic biomaterials can
be modified.

2. Results and Discussion

The integration of spider silk protein with organo- and fluoro-silanes, referred to as the SS-silica
nanocomposites is detailed in the Materials Section. The hybrid particles are prepared by addition of
the synthetic spider silk into the acid-hydrolyzed silane solutions followed by microwave-induced
solubilization of the SS protein then addition of base to induce condensation. The SS-silica
nanocomposites were assessed using SEM, AFM, and infrared spectroscopy. In Figure 1, SEM
images reveal nanoparticles (NPs) synthesized from the pure silanes (top row) and the SS-silica hybrid
particles (bottom row). The pure fluoro (3F) and organo (nPM) silane NPs formed through the acid/base
two-step method form highly regular spheres with sizes generally ranging between 350 and 550 nm.
These particles resemble typical NPs prepared via Stöber sol-gel methodology; however, the 3F and
nPM particles are prepared without any alcohol as co-solvent. The SS-silica nanocomposite particles,
Figure 1, bottom row, are notably smaller than the pure silane controls in the top row. These images also
suggest that the SS-nPM particles (Figure 1b) are more monodisperse (<50 nm) than the SS-3F particles
in Figure 1d where particle sizes are multimodal, with sizes <50 nm and >300 nm clearly observed.
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Figure 1. SEM images of (a) nPM based silica NPs, (b) SS-nPM silica nanocomposites, (c) 3F based 
silica NPs, and (d) SS-3F silica nanocomposites. 

Both SS-nPM and SS-3F particles appear highly aggregated under SEM observation. The 
morphological differences among the SS-silica nanocomposites may arise from templating effects of 
the protein on the sol-gel process, apparently favoring formation of smaller NPs. From the SEM data 
it, is uncertain if the larger particles in the SS-3F synthesis are also hybrid particles, or whether these 
reflect a competing process of forming pure silane particles. However, we believe the protein and 
silane to be integrated into composite particles for the SS-3F synthesis based on the following: (1) 
There was no evidence of protein fibrils in the SEM and AFM images of the SS-3F systems; (2) the 3F 
to SS molar stoichiometry was 200:1, which is selected to provide sufficient silane (~200 Da) to 
interact with SS protein (~100 kDa); and (3) the decrease in particle size when the sol-gel process 
occurred in the presence of SS protein indicated some type of templating or interaction between 
organic/inorganic components. Differences between nPM and 3F interactions with SS protein in their 
hydrolyzed states are also possible, with hydrolyzed 3F exhibiting a higher dipole moment than 
nPM due to the strong electronegativity of the tri-fluoro moiety pendent to the Si atom in 3F. These 
effects could yield the differences in the 3F-SS and nPM-SS particles observed in the SEM images. 

AFM was employed as a complementary imaging modality, and in particular, is highly 
sensitive to analyzing pure SS fibrils, as shown in Figure 2a. No fibrillated proteins were observed 
upon addition of either silane, as shown in Figure 2b,c. During the microwave synthesis, the SS 
proteins apparently integrated with the nPM and 3F hydrolyzed monomers and condensation 
products, thus inhibiting silk protein self-assembly into the characteristics fibrils shown in Figure 2a. 
The SS-nPM silica nanocomposites and SS-3F silica nanocomposites shown in panels b and c, 
respectively, reveal the particles to be highly aggregated as observed in the SEM images. 

 

Figure 1. SEM images of (a) nPM based silica NPs, (b) SS-nPM silica nanocomposites, (c) 3F based
silica NPs, and (d) SS-3F silica nanocomposites.

Both SS-nPM and SS-3F particles appear highly aggregated under SEM observation. The
morphological differences among the SS-silica nanocomposites may arise from templating effects of
the protein on the sol-gel process, apparently favoring formation of smaller NPs. From the SEM data it,
is uncertain if the larger particles in the SS-3F synthesis are also hybrid particles, or whether these
reflect a competing process of forming pure silane particles. However, we believe the protein and
silane to be integrated into composite particles for the SS-3F synthesis based on the following: (1) There
was no evidence of protein fibrils in the SEM and AFM images of the SS-3F systems; (2) the 3F to SS
molar stoichiometry was 200:1, which is selected to provide sufficient silane (~200 Da) to interact with
SS protein (~100 kDa); and (3) the decrease in particle size when the sol-gel process occurred in the
presence of SS protein indicated some type of templating or interaction between organic/inorganic
components. Differences between nPM and 3F interactions with SS protein in their hydrolyzed states
are also possible, with hydrolyzed 3F exhibiting a higher dipole moment than nPM due to the strong
electronegativity of the tri-fluoro moiety pendent to the Si atom in 3F. These effects could yield the
differences in the 3F-SS and nPM-SS particles observed in the SEM images.

AFM was employed as a complementary imaging modality, and in particular, is highly sensitive
to analyzing pure SS fibrils, as shown in Figure 2a. No fibrillated proteins were observed upon
addition of either silane, as shown in Figure 2b,c. During the microwave synthesis, the SS proteins
apparently integrated with the nPM and 3F hydrolyzed monomers and condensation products, thus
inhibiting silk protein self-assembly into the characteristics fibrils shown in Figure 2a. The SS-nPM
silica nanocomposites and SS-3F silica nanocomposites shown in panels b and c, respectively, reveal
the particles to be highly aggregated as observed in the SEM images.

ATR-FTIR spectra (Figure 3) showed some major conformational changes in the amide I zone
(1575 cm−1 to 1725 cm−1) of SS proteins within the SS-nPM silica nanocomposites, and SS-3F silica
nanocomposites compare to the SS proteins alone. Figure 3 also includes spectra for the pure nPM
and 3F silica NPs. With the amide I and amide II zones, other bending and stretching peaks are
also shown in the respected spectra. Spectra representing 3F based silica NPs and SS-3F based silica
nanocomposites show the C-F stretching and deformation at 840 cm−1, 1210 cm−1, and 1260 cm−1 [38].
Peaks at 1210 cm−1 representing the deformation vibration of Si-CH2- exist in both 3F and nPM, causing
the increased adsorption intensity at 1210 cm−1 in 3F based silica NPs and SS-3F silica nanocomposites
as it overlaps with C-F vibration [39]. Strong bands between 1210–1000 cm−1 are due to the stretching
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vibrationofSi-O-SiobservedinallspectraexcepttheSSspectrumconfirmthepresenceof3Dpolymeric

networkofSiO2[39,40].Anotheradsorptionbandaround800cm
−1isalsoobservedrepresenting

Si-O-Siinallthespectraofsilica-containingsamples[41
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Figure3. ATR-FTIRspectraofnPMbasedsilicaNPs,3FbasedsilicaNPs,SS-nPMbasedsilica

nanocomposites(SS-nPM),SS-3Fbasedsilicananocomposites(SS-3F),andSSproteins.

Additionally,thepeaksforCH3,CH2(1320-1450cm
−1),and–CH(900cm−1)werevisibleinall

thespectraexceptspectrumforSSprotein[39].ThepresenceofAmideIandIIinSS-nPMandSS-3F

silicananocompositesalongwiththeotherpeaksavailablefornPMand3FbasedsilicaNPsconfirm

theintegrationoftheSSintheparticlesobservedinSEMandAFM.

ThespectrarepresentingthenanocompositesandSSproteinweredeconvolutedintheiramideI

zonetoquantifytheconformationalchangesoccurredinthesecondarystructuresduetotheinteraction
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of SS protein with nPM and 3F during the formation of nanocomposites. The deconvoluted FTIR spectra
of SS, SS-3F, and SS-nPM are shown in Figure 4a–c, respectively. Figure 4d provides a comparison
of the secondary structure content in the corresponding SS proteins. In SS-3F silica nanocomposites,
β-sheet was reduced by 20%, and β-turn reduced by 41% compared to the spectra reporting these
secondary structures in SS proteins alone. In the SS-3F silica nanocomposites two new secondary
structures corresponding to a 310-helix appeared and was 25% of the total secondary structures present
in the SS-3F nanocomposites.
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Figure 4. Deconvoluted ATR-FTIR spectra of (a) SS proteins, (b) SS-3F silica nanocomposites, (c)
SS-nPM silica nanocomposites, and (d) conformational change in secondary structures of BLG.

An opposite trend was observed in the secondary structures in the amide I zone of SS-nPM
silica nanocomposites, where both of the primary β structures (sheet and turn) increased. In these
nanocomposites, β-sheet increased by 14%, β-turn and α-helix decreased by 4% and 26%, respectively.
These patterns of conformational changes in the secondary structures of SS proteins are consistent with
conformational changes observed in BLG protein, as reported by Peng et al. [37]. BLG is a relatively
low MW (~18.4 kDa), water soluble, globular protein in contrast to the 65–120 kDa hydrophobic SS
proteins investigated here. [42] The solubilization of the SS proteins in the presence of the silanes
through microwave energy solubilization procedure provides a facile means to synthesis hybrid
silane-biomacromolecule nanoparticle–microparticle composites.

3. Materials and Methods

3,3,3-trifluoropropyl trimethoxy silane (3F, > 95% purity, MW = 218.3, d = 1.14 g/mL),
and n-propyltrimethoxy silane (nPM, > 95% purity, MW = 164.3, d = 0.94 g/mL) were purchased
from Gelest, Inc. (Morrisville, PA, USA). 50% (w/w) NH4OH was purchased from Fisher Scientific.
Muscovite mica was purchased from SPI supplies for AFM study (West Chester, PA, USA). AFM tips
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wereobtainedfromTEDPellaInc.,Redding,CA(TAP300AL-G-50).Recombinantspidersilkprotein

wasobtainedfromR.Lewis,UtahStateUniversityDepartmentofBiology.Twodifferenttypesof

SSproteinsuchasmajorampullatesilkproteinrMaSp1andmajorampullatesilkproteinrMaSp2

werepurifiedfromthemilkoftransgenicgoatsthroughtangentialflowfiltration,precipitation,and

washing,yielding65–120kDaproteins.[42]

Thehybridsilane/proteincompositeswerepreparedbyfirstpreparingthesilanesolutions.3F

(0.4M)andnPM(0.4M)werehydrolyzedatpH3.0inaqueousmediainseparatevials.TwoSS

proteins(rMaSp1andrMaSp2)weremixedwitharatioof50:50[1%w/vor~0.001M)andaddedin5

mL3FandnPMmediaseparatelyafterdilutinghydrolyzed3FandnPMsolutionto0.02Mwhich

makestoichiometryof3F/nPM:SSas200:1.Theproteinremainedasavisiblewhiteaggregateinthe

solution.Thesemixedsolutionswerethenmicrowaved(Haiermicrowave(700W)for8s,followed

bya30spause,for4timesinatightlyclosedglassvialstodissolvetheSS.Following4cycles,the

temperatureinthevialsreached130◦Candtheresultingsolutionswereclear.

Followingmicrowave-facilitateddissolutionoftheSSprotein,thesolutionswerecooledto23◦C

usinganicewaterbath.A5mLaliquotofthesolutionwasremoved,stirredat500rpm,and50µL

ofNH4OHwasaddeddropwisetocatalyze3F/nPMcondensation.Acloudysolformedandafter

2hthesolutionwastransferredto15mLcentrifugetubes,centrifugedat4000rpmtoformapellet.

ThesupernatantwasdiscardedandpelletresuspendedinDIwater.Thecentrifugationandwash

procedureswererepeatedtwotimes.Thewetpelletwasthenfrozenat−80◦Candlyophilizedfor

12h.ThedriedpowderofSS-nPMorSS-3Fwascollectedandstoredforanalysis.Theexperimental

schematicisshowninFigure5
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Figure5.SchematicofExperimentalprocedureofthespidersilkand3F/nPMnanocompositematerials.

DriednanocompositematerialmorphologieswereanalyzedusingAFMandSEM.SEMwas

performedwithaFEIQuantaFEG650equippedwithanOxfordX-MaxenergydispersiveX-ray

spectroscopy(EDS),(ThermoFisherScientific,Hillsboro,OR,USA)housedintheMicroscopyCore

FacilityatUtahStateUniversity.Sampleswereimagedwith20kVacceleratingpotentialwithout

conductivecoatings.AFMimagesweretakenusingNanoscopeIIIBioscope(DigitalInstrument,Inc.,

Camarillo,CA,USA)intappingmodewithAl-coatedBS-Tap300cantileversfromBudgetSensor,
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Sofia, Bulgaria. 100 µL samples were drop-cast on freshly cleaved mica surfaces then gently washed
with DI water and air-dried before taking AFM images.

Bonding between spider silk protein and both fluorinated and methylated silica were analyzed
by FTIR using a Varian 660-IR (Agilent, Santa Clara, CA, USA) with a horizontal single reflection
Pike Technologies MIRacle attenuated total reflectance (ATR) unit, fitted with a ZnSe crystal. 100 µL
samples were drop cast on the ZnSe crystal of the ATR platform and air-dried before taking the reading.
Readings were taken after averaging 20 scans over the range of 600 cm−1 to 1800 cm−1 with a resolution
of 1 cm−1. Prior to each reading, a background scan was acquired. The ATR-FTIR spectra were later
deconvoluted using OriginPro, OriginLab Corporation (Northampton, MA, USA), to analyze the
transformation in the secondary structures of spider silk protein.

4. Conclusions

An aqueous sol-gel process combined with microwave-assisted dissolution of hydrophobic
synthetic spider silk is demonstrated here to yield silk-silica nanocomposite particles. Sub-micron
particles were observed for both silk ORMOSIL (SS-nPM) and silk-F-ORMOSIL (SS-3F) hybrids.
Incorporation of SS into the sol-gel process yielded relatively spherical 3F and nPM silk nanocomposites
with a greater range of sizes and morphologies, as contrasted with the pure nPM and 3F silica NPs.
In the absence of the two hydrophobic silanes, pure SS assembled into fibrillar strands exhibiting
strong amide I and II peaks in the ATR-FTIR spectra. Shifts in these peaks in the nanocomposites
further confirmed an intimate integration of the SS protein with the silanes in the nanocomposites.
However, the influence of the organo- and fluoro-silanes on the SS secondary structures were distinct.
Deconvoluted ATR-FTIR spectra showed the increased β structures in SS-nPM silica nanocomposites
and decreased β structures in the SS-3F silica nanocomposites. The ability to induce defined secondary
structures in the protein-silane hybrid particles may allow for bottom-up design of bioactive particles,
surfaces, and monoliths where subsequent epitaxial growth and biomineralization can be tuned for
user-defined applications.
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